

12	LESS THAN CUMULATIVE FREQUENCY CURVE MORE THAN CUMULATIVE FREQUENCY CURVE	1-Mark for conversion to less than $2-$ Marks for Construction of Ogive Check for Scale, Labelling and Neatness.
13	1. Primary data 2. False 3. 10 years 4. (A) Census of India and NSSO	$1 \mathrm{X} 4=4-$
14	S.N. Marks (x) Assumed Mean (A) $\mathbf{d x}$ $(\mathbf{x - A)}$ 1 15 -25 2 20 -20 3 30 -10 4 22 -18 5 25 -15 6 18 -22 7 40 $\mathbf{4 0}$ 0 8 50 10 9 55 15 10 65 25 $\mathbf{N}=\mathbf{1 0}$ $\sum \mathbf{x}=\mathbf{3 4 0}$ $\sum \mathbf{d x}=\mathbf{- 6 0}$ Direct Method	2-Marks - Direct Method formula 1 Mark - finding x \& N $1-$ Mark substitution of values \& Final answer 2 - Marks - Assumed mean Method 1-Mark - formula 1 Mark -

	$\overline{\mathrm{X}}=\frac{\Sigma \mathrm{x}}{\mathrm{~N}}=\frac{340}{10}=34 \quad \overline{\mathrm{X}}=\mathbf{3 4}$ Assumed Mean Method $\overline{\mathrm{X}}=\mathrm{A}+\frac{\sum \mathrm{dx}}{\mathrm{~N}}=40+\frac{-60}{10}=40-6 \quad \overline{\mathbf{X}}=\mathbf{3 4}$ OR Arithmetic mean (Assumed mean method) $\overline{\mathrm{X}}=\mathrm{A}+\frac{\Sigma \mathrm{dfx}}{\Sigma \mathrm{f}}=35+\frac{150}{50}=35+3=38 \quad \overline{\mathrm{X}}=38$ Arithmetic mean $=38$	finding dx and $\sum \mathrm{dx}$ 1 - Mark Formula 1 Mark finding dx and $\sum \mathrm{f}_{\mathrm{x}}$ 1 - Mark substitution of values 1- Mark Final answer
15	Marks No. of students (f) cf $0-10$ 6 6 $10-20$ 16 22 $20-30$ 16 38 $30-40$ 20 58 $40-50$ 14 72 $50-60$ 10 82 $60-70$ 10 92 $70-80$ 8 100 Median $\mathrm{M}=\left(\frac{\mathrm{N}}{2}\right)$ th term $=\left(\frac{100}{2}\right)$ th term $=50$ th term Median Class $=30-40$ Median = 36 $\mathrm{M}=\mathrm{l}_{1}+\frac{\frac{\mathrm{N}}{2}-\mathrm{cf}}{\mathrm{f}} \mathrm{Xi} \quad=30+\frac{50-38}{20} \times 10$	1-Mark formula 1 Mark finding cf 1 - Mark substitution of values 1- Mark Final answer
16	A continuous variable can take any numerical value. It may take integral values (1, 2, $3,4, \ldots$), fractional values $(1 / 2,2 / 3,3 / 4, \ldots)$, and values that are not exact fractions ($\sqrt{2}$ $=\sqrt{1.414}$.), etc. A discrete variable can take only certain values. Its value changes only by finite "jumps". It "jumps" from one value to another but does not take any intermediate value between them.	2 - Marks for continuous 2 - Mark for Discrete

	Diffe	Typ N So	food Indian \% Indian	$\begin{aligned} & \text { - Nort } \\ & \text { - Sour } \\ & \text { - Chin } \\ & \text { - Htali } \\ & \text { - Mex } \end{aligned}$	
PART - B: INTRODUCTORY MICROECONOMICS (40 Marks)					
18	(B) Scarcity of economic resources OR 1 - Mark (A) Economic behaviour of individual economic decision making units				
19	(C) Relative prices and availability of factor of production				1-Mark
20	(B) It shows various combination of two goods which an economy can produce with a given amount of resources				1-Mark
21	(D) Assertion is false but Reason is true				1-Mark
22	(B) 25 utils				1-Mark
23	(A) Inverse				1-Mark
24	(A) Substitutes (B) Complements				1-Mark
25	(C)A change in quantity demanded. (B) Distribution of Income				1-Mark
26	(B) Greater application of variable factors				1-Mark
27	(C) Average product				1-Mark
28	When resources are shifted from the production of one good to the production of the other good, marginal opportunity cost rises because resources are use specific. When resources are shifted from their specialized use, efficiency will suffer as loss of output on one good for every additional unit of output of the other good produced. Hence MOC rises.				3-Marks for the explanation. Can use example also for explanation.
29	Units of labour	TP of labour	AP	MP	$11 / 2$ - Marks for Average

	OR Suppose original price to be ₹ ' p ' per unit. $\Delta \mathrm{Q}=3$ units, $\Delta \mathrm{P}=-1 \mathrm{Q}=30$. Given $\mathrm{Ep}=-1.5$ $\begin{aligned} & \mathrm{Ep}=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{P}} \times \frac{\mathrm{P}}{\mathrm{Q}}=-1.5=\frac{3}{-1} \times \frac{\mathrm{P}}{30} \\ & =3 \mathrm{P}=45=\frac{45}{3}=15 \quad \mathrm{P}=15 \end{aligned}$ Original Price $P=\boldsymbol{₹} \mathbf{1 5}$ per unit	1-Mark Formula 2-Marks Substitution of values and calculation 1- mark final answer
33	The Law of Equi-marginal utility states that the consumer will get maximum satisfaction if the marginal utility of the last rupee of expenditure on each good is the same. Suppose a consumer consumes only two goods. Let these goods be X and Y . The consumer is in equilibrium when he allocates his income in two goods X and Y in such a manner that he derives maximum satisfaction. Given the consumer's income and prices of the two goods (Px and Py): The necessary condition for the consumer to be in equilibrium in case of equi-marginal utility will be: $\frac{\mathbf{M U}_{\mathbf{X}}}{M U_{\mathbf{Y}}}=\frac{\mathbf{P}_{\mathbf{X}}}{\mathbf{P}_{\mathbf{y}}}=\mathbf{M U} \text { of the last rupee spent on each good }$ If $\frac{\mathbf{M U}_{\mathbf{X}}}{\mathbf{M U}_{\mathbf{Y}}}>\frac{\mathbf{P}_{\mathbf{X}}}{\mathbf{P}_{\mathbf{X}}}$ the consumer will not be in equilibrium. The satisfaction derived by consuming Commodity X is greater than the satisfaction derived by consuming Commodity Y. The consumer will reallocate his income by spending more on commodity X. Buying more of X reduces MUx. Px remaining unchanged $\frac{\mathbf{M U X}_{\mathbf{X}}}{\mathbf{P}_{\mathbf{X}}}$ also reduces. If $\frac{\mathbf{M U} \mathbf{U}_{\mathbf{X}}}{\mathbf{M} \mathbf{U}_{\mathbf{Y}}}<\frac{\mathbf{P}_{\mathbf{X}}}{\mathbf{P}_{\mathbf{y}}}$ the consumer will not be in equilibrium. The satisfaction derived by consuming Commodity Y is greater than the satisfaction derived by consuming Commodity X . The consumer will reallocate his income by spending more on commodity Y. Buying more of Y reduces MUy. Py remaining unchanged $\frac{\mathbf{M U}_{\mathbf{y}}}{\mathbf{P}_{\mathbf{y}}}$ also reduces. OR Consumer's equilibrium means maximum satisfaction level of the consumer, given his money income and prices of the two goods in the market. The two conditions of consumer's equilibrium under Indifference Curve Analysis (Ordinal Utility Analysis) are: 1. Marginal Rate of Substitution (MRS) and Price Ratio must be equal, i.e. $\mathbf{M R S}=\frac{\mathbf{P}_{\mathrm{x}}}{\mathbf{P}_{\mathrm{y}}}$ 2. MRS must be diminishing as consumption of good X increases. Diagrammatically, the two conditions of consumer's equilibrium under indifference curve analysis are:	2- Marks for the two conditions 2 - Marks for the diagram 2 - Marks for the explanation 2- Marks for the two conditions 2 - Marks for the diagram 2 - Marks for the explanation

	 1. Budget line is tangential to a particular indifference Curve at a unique combination of the two goods. It is because if the budget line is tangent to an indifference curve at a point, the slope of the indifference curve and the slope of budget line are equal (i.e., $\mathrm{MRS}=\mathrm{Px} / \mathrm{Py}$) at that point. 2. The indifference curve is strictly convex to the origin at equilibrium. This is because MRS diminishes as consumption of good X increases.	
34	Change in income of the consumer. The effect of change in income on demand for a good depends on whether it is a normal good or an inferior good. Normal good is any good whose demand increases as the consumer's income increases, and decreases as the consumer's income decreases. Inferior good is any good whose demand falls as the consumer's income increases, and as the consumer's income decreases, the demand for it rises. Change in prices of related goods Related goods are either substitutes or complements. Substitute goods are those goods which can be used in place of one another, for satisfaction of a particular want. An increase in price of a substitute good makes the given good relatively cheaper and vice versa Complementary goods are those goods which are consumed (or used) jointly/together to satisfy a given want. An increase in price of the complementary good reduces its demand, which in turn decreases the demand for the given good at the same price.	$\begin{gathered} 3-\text { Marks - } \\ \text { change in } \\ \text { income } \\ 3-\text { Marks - } \\ \text { Change in } \\ \text { prices of } \\ \text { related goods } \end{gathered}$

		2 - Marks for Construction 1 Mark for Check for Scale, Labelling and Neatness.
12	1. It presents facts in a definite form. 2. It helps in condensing mass data into a few numerical measures (such as mean, variance etc.) 3. It facilitates comparison. 4. It helps in prediction. 5. It helps in the formulation of plans and policies.	Any three $1 \times 3=3$ Marks
13	Calculate Median Median $M=\left(\frac{N}{2}\right) \text { th term }=\left(\frac{800}{2}\right) \text { th term }=400 \text { th term }$ Median Class $=35-40$ $\mathrm{M}=\mathrm{l}_{1}+\frac{\frac{\mathrm{N}}{2}-\mathrm{cf}}{\mathrm{f}} \mathrm{Xi} \quad=35+\frac{400-220}{180} \mathrm{X} 5=35+5=40$ Median = 40	1-Mark formula 1 Mark finding cf 1 - Mark substitution of values 1- Mark Final answer
14	1. Primary data 2. False 3. 10 years 4. (A) Census of India and NSSO	$\begin{gathered} 1 \mathrm{X} 4=4- \\ \text { Marks } \end{gathered}$

		diagram. Check Labelling, title and proper construction.
17	A continuous variable can take any numerical value. It may take integral values (1, 2, $3,4, \ldots$), fractional values $(1 / 2,2 / 3,3 / 4, \ldots)$, and values that are not exact fractions ($\sqrt{2}$ $=\sqrt{1.414}$.), etc. A discrete variable can take only certain values. Its value changes only by finite "jumps". It "jumps" from one value to another but does not take any intermediate value between them. OR (a) Chronological classification: The raw data grouped according to time. Such a classification is known as a Chronological Classification. Data is classified either in ascending or in descending order with reference to time such as years, quarters, months, weeks, etc. (b) Spatial classification: Data classified with reference to geographical locations such as countries, states, cities, districts, etc.	1 - Mark for Inclusive 1 - Mark for Exclusive 2 - Marks for Class intervals 2 Marks for Tally bars and frequency

	the richest economy (like USA) cannot satisfy all the needs of people. Scarcity of resources gives rise to the problem of choice, i.e., economic problem. If resources were available in plenty, there would not have been any problem of choice.	Can use example also for explanation.
30	$\begin{aligned} & \cline { 2 - 3 } \\ & \cline { 2 - 3 } \\ & \cline { 2 - 3 } \\ & \mathrm{Ep}=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{P}} \times \frac{\mathrm{P}}{\mathrm{Q}}=1=\frac{4}{\Delta \mathrm{P}} \times \frac{1}{40} \\ & =10 \Delta \mathrm{P}=1 \quad \Delta \mathrm{P}=\frac{1}{10}=0.10 \\ & \hline \end{aligned}$ Original Price $P=₹ 1$ per unit $\text { New Price }=P+\Delta P=1+0.10=₹ 1.10 p$ OR $\mathrm{Ep}=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{P}} \times \frac{\mathrm{P}}{\mathrm{Q}}=2=\frac{\Delta \mathrm{Q}}{2} \times \frac{10}{40}$ $=\Delta Q=16$ Original Quantity $=40 \mathrm{Kg}$ New Quantity $=Q+\Delta Q=40+16=56$ Units	1-Mark Formula 1-Mark Substitution of values 1- mark final answer 1- mark Type of elasticity 1-Mark Formula 2-Marks Substitution of values and calculation 1- mark final answer
31	Production possibility curve is drawn on the assumption that the given resources are fully and efficiently employed. Due to the earthquake, production facilities are destroyed, which implies loss of productive resources. This will cause the PPC to shift to the left	2 Marks Explanation 2 - Marks diagram $2+2=4$ Marks
32	1. (D) The prices of goods and the income of consumer 2. Giffen goods 3. Negative 4. (B) Leftward shift of the demand curve	$\begin{gathered} 1 \mathrm{X} \mathrm{4}=4 \\ \text { Marks } \end{gathered}$
33	Law of Demand states that other things remaining unchanged, there is a negative (or inverse) relation between demand for a commodity and its price. In other words, when price of the commodity increases, demand for it falls and when price of the commodity decreases, demand for it rises, other factors remaining the same. 1. Law of diminishing MU (Principle of $\mathbf{M U}=$ Price): As we consume more	2 - Marks Law of demand 2 - Marks Law of diminishing

	and more units of a commodity, marginal utility (MU) of each successive unit consumed goes on diminishing due to the operation of law of diminishing marginal utility. Therefore, we will be willing to pay less for each successive unit. Thus, we will buy more units of a commodity only when its price falls. 2. Income effect: When price of a good falls, the purchasing power (real income) of the consumer increases as he will be able to purchase more quantity of the good with the same money income. This phenomenon is called as income effect. 3. Substitution effect: When price of good X falls, it becomes relatively cheaper than good Y. So, the consumer maximizes his utility by substituting good X for good Y. This phenomenon is called as substitution effect	MU $1-$ Mark Income effect $1-$ Mark Substitution effect
34	The Law of Equi-marginal utility states that the consumer will get maximum satisfaction if the marginal utility of the last rupee of expenditure on each good is the same. Suppose a consumer consumes only two goods. Let these goods be X and Y . The consumer is in equilibrium when he allocates his income in two goods X and Y insuch a manner that he derives maximum satisfaction. Given the consumer's income and prices of the two goods (Px and Py): The necessary condition for the consumer to be in equilibrium in case of equi-marginal utility will be: $\frac{\mathrm{MU}_{\mathrm{X}}}{\mathrm{MU}_{\mathrm{Y}}}=\frac{\mathrm{P}_{\mathrm{X}}}{\mathrm{P}_{\mathrm{y}}}=\mathrm{MU} \text { of the last rupee spent on each good }$ If $\frac{\mathbf{M} \mathbf{U}_{\mathbf{X}}}{\mathbf{M} \mathbf{U}_{\mathbf{Y}}}>\frac{\mathbf{P}_{\mathbf{X}}}{\mathbf{P}_{\mathbf{y}}}$ the consumer will not be in equilibrium. The satisfaction derived by consuming Commodity X is greater than the satisfaction derived by consuming Commodity Y. The consumer will reallocate his income by spending more on commodity X. Buying more of X reduces $M U x$. Px remaining unchanged $\frac{\mathbf{M U}_{\mathbf{X}}}{\mathbf{P}_{\mathbf{X}}}$ also reduces. If $\frac{\mathbf{M U}_{\mathbf{X}}}{\mathbf{M U}_{\mathbf{Y}}}<\frac{\mathbf{P}_{\mathbf{X}}}{\mathbf{P}_{\mathbf{y}}}$ the consumer will not be in equilibrium. The satisfaction derived by consuming Commodity Y is greater than the satisfaction derived by consuming Commodity X . The consumer will reallocate his income by spending more on commodity Y. Buying more of Y reduces MUy. Py remaining unchanged $\frac{\mathrm{MU}_{\mathbf{y}}}{\mathbf{P}_{\mathbf{y}}}$ also reduces. OR Consumer's equilibrium means maximum satisfaction level of the consumer, given his money income and prices of the two goods in the market. The two conditions of consumer's equilibrium under Indifference Curve Analysis (Ordinal Utility Analysis) are: 1. Marginal Rate of Substitution (MRS) and Price Ratio must be equal, i.e. $\mathrm{MRS}=\frac{\mathrm{P}_{\mathrm{x}}}{\mathrm{P}_{\mathrm{y}}}$ 2. MRS must be diminishing as consumption of good X increases. Diagrammatically, the two conditions of consumer's equilibrium under indifference curve analysis are:	2- Marks for the two conditions 2 - Marks for the diagram 2 - Marks for the explanation 2- Marks for the two conditions 2 - Marks for the diagram 2 - Marks for the explanation

	 1. Budget line is tangential to a particular indifference Curve at a unique combination of the two goods. It is because if the budget line is tangent to an indifference curve at a point, the slope of the indifference curve and the slope of budget line are equal (i.e., $\mathrm{MRS}=\mathrm{Px} / \mathrm{Py}$) at that point. 2. The indifference curve is strictly convex to the origin at equilibrium. This is because MRS diminishes as consumption of good X increases.

INDIAN SCHOOL MUSCAT
HALF YEARLY EXAMINATION 2022

Q. No	VALUE POINTS	MARKS SPLIT UP
1	True False	1-Mark
2	(D) The class midpoints	1-Mark
3	(A) Chronological Classification	1-Mark
4	(C) Class mark	1-Mark
5	Raw data	1-Mark
6	(A) Arithmetic Mean OR (B)The simple average of these two middle values	1-Mark
7	Distribution	1-Mark
8	Presentation, interpretation	1-Mark
9	(C) Secondary data OR (A) Primary data	1-Mark
10	(B) They are difficult to interpret and hard to score.	1-Mark
11	1. It presents facts in a definite form. 2. It helps in condensing mass data into a few numerical measures (such as mean, variance etc.) 3. It facilitates comparison. 4. It helps in prediction. 5. It helps in the formulation of plans and policies. (any three)	$\begin{gathered} 1 \times 3=3 \\ \text { Marks } \end{gathered}$

12	Less Than Ogive OR More Than Ogive	1-Mark for conversion to less than 2 - Marks for Construction of Ogive Check for Scale, Labelling and Neatness. 1-Mark for conversion to More than 2 - Marks for Construction of Ogive Check for Scale, Labelling and Neatness.
13	S.N. Marks (x) Assumed Mean (A) $\mathbf{d x}$ $(\mathbf{x}-\mathbf{A)}$ 1 15 -25 2 20 -20 3 30 -10 4 22 -18 5 25 -15 6 18 -22 7 40 $\mathbf{4 0}$ 0 8 50 10 9 55 15 10 65 25 $\mathbf{N}=\mathbf{1 0}$ $\sum \mathbf{x}=\mathbf{3 4 0}$ $\sum \mathbf{d x}=\mathbf{- 6 0}$ Direct Method $\overline{\mathrm{X}}=\frac{\Sigma \mathrm{x}}{\mathrm{~N}}=\frac{340}{10}=34 \quad \overline{\mathbf{X}}=\mathbf{3 4}$	2-Marks Direct Method formula 1 Mark finding $\sum \mathrm{x}$ \& N 1 - Mark substitution of values \& Final answer 2 - Marks Assumed mean Method 1-Mark formula 1 Mark finding dx and $\sum \mathrm{dx}$

	$=\sqrt{1.414} .), \text { etc. }$ A discrete variable can take only certain values. Its value changes only by finite "jumps". It "jumps" from one value to another but does not take any intermediate value between them.				2 - Mark for Discrete 2 Marks for Tally bars and frequency	
	15	$\mathrm{H} H \mathrm{H}$	H1\\|	14		
	16	$\mathrm{H} H \mathrm{H}$	1 l	18		
	17	H H		10		
	18	H		6		
	19			2		
				$\sum \mathrm{f}=50$		
	OR Inclusive class intervals In this case, values equal to the lower and upper limits of a class are included in the frequency of that same class. Both the upper and the lower class limits are included in the Inclusive Method. Exclusive class intervals In this case, the value equal to either the upper or the lower class limit is excluded from the frequency of that class. Either the upper class limit or the lower class limit is excluded in the Exclusive Method.					
					1 - Mark for Inclusive 1 - Mark for Exclusive 2 - Marks for Class intervals	
	Class Intervals Tally bars $^{\text {a }}$			Frequency		
	1-6	H		11	2 Marks for Tally bars and frequency	
	7-12	HH		9		
	13-18	HH H		10		
	19-24	H		5		
	25-30	H		6		
	31-36	U1		3		
				$\sum \mathrm{f}=44$		
17	Pie diagram is a circle divided into various segments showing the percent values of a data series. It is also known as sector diagram.				2 Marks for Pie Diagram definition 2 Marks Conversion of data as \% and Angle on Pie 2 Marks for construction of pie diagram. Check Labelling, title and proper construction.	
	Type of food	No. of people	\% of people	Angle on Pie		
	North Indian	150	30\%	108°		
	South Indian	100	20\%	72°		
	Chinese	125	25\%	90°		
	Italian	75	15\%	54°		
	Mexican	50	10\%	36°		
		500	100\%	$360{ }^{\text { }}$		

		Different Type of food	

	Due to the earthquake, production facilities are destroyed, which implies loss of productive resources. This will cause the PPC to shift to the left	$2 \text { - Marks }$ diagram $2+2=4$ Marks
33	The Law of Equi-marginal utility states that the consumer will get maximum satisfaction if the marginal utility of the last rupee of expenditure on each good is the same. Suppose a consumer consumes only two goods. Let these goods be X and Y . The consumer is in equilibrium when he allocates his income in two goods X and Y insuch a manner that he derives maximum satisfaction. Given the consumer's income and prices of the two goods (Px and Py): The necessary condition for the consumer to be in equilibrium in case of equi-marginal utility will be: $\frac{M U_{X}}{M U_{Y}}=\frac{P_{X}}{P_{\mathbf{y}}}=M U \text { of the last rupee spent on each good }$ If $\frac{\mathbf{M U} \mathbf{U}_{\mathbf{X}}}{\mathbf{M} \mathbf{U}_{\mathbf{Y}}}>\frac{\mathbf{P}_{\mathbf{X}}}{\mathbf{P}_{\mathbf{y}}}$ the consumer will not be in equilibrium. The satisfaction derived by consuming Commodity X is greater than the satisfaction derived by consuming Commodity Y. The consumer will reallocate his income by spending more on commodity X. Buying more of X reduces MUx. Px remaining unchanged $\frac{\mathbf{M U X}_{\mathbf{X}}}{\mathbf{P X}_{\mathbf{X}}}$ also reduces. If $\frac{\mathbf{M U}_{\mathbf{X}}}{\mathbf{M} \mathbf{U}_{\mathbf{Y}}}<\frac{\mathbf{P}_{\mathbf{X}}}{\mathbf{P}_{\mathbf{y}}}$ the consumer will not be in equilibrium. The satisfaction derived by consuming Commodity Y is greater than the satisfaction derived by consuming Commodity X . The consumer will reallocate his income by spending more on commodity Y. Buying more of Y reduces MUy. Py remaining unchanged $\frac{\mathbf{M U}_{\mathbf{y}}}{\mathbf{P}_{\mathbf{y}}}$ also reduces. OR Consumer's equilibrium means maximum satisfaction level of the consumer, given his money income and prices of the two goods in the market. The two conditions of consumer's equilibrium under Indifference Curve Analysis (Ordinal Utility Analysis) are: 1. Marginal Rate of Substitution (MRS) and Price Ratio must be equal, i.e. $\mathbf{M R S}=\frac{\mathbf{P}_{\mathrm{x}}}{\mathbf{P}_{\mathbf{y}}}$ 2. MRS must be diminishing as consumption of good X increases. Diagrammatically, the two conditions of consumer's equilibrium under indifference curve analysis are:	2- Marks for the two conditions 2 - Marks for the diagram 2 - Marks for the explanation 2- Marks for the two conditions 2 - Marks for the diagram 2 - Marks for the explanation

	 1. Budget line is tangential to a particular indifference Curve at a unique combination of the two goods. It is because if the budget line is tangent to an indifference curve at a point, the slope of the indifference curve and the slope of budget line are equal (i.e., $\mathrm{MRS}=\mathrm{Px} / \mathrm{Py}$) at that point. 2. The indifference curve is strictly convex to the origin at equilibrium. This is because MRS diminishes as consumption of good X increases.	
34	(a) Nature of the good: If the good is a necessity like food, its demand is not likely to be affected much by change in its price. So, demand for necessities is price-inelastic $(\mathrm{eD}<1)$ because in case of price change, it becomes difficult to reduce the consumption of the good. On the other hand, demand for luxuries (e.g., luxury car or mobile phone) is price-elastic (eD > 1), because with rise in price, consumers may reduce demand for luxuries. (b) Availability of close substitutes of the good: If close substitutes are easily available, e.g. pulses; if the price of a variety of pulses rises, consumers can shift to some other variety of pulses which is a close substitute. So, demand for such a good is price-elastic. Larger the number of substitutes available, more is the choice before the consumer and so more elastic is the demand. On the other hand, if close substitutes are not available, e.g. salt, water etc., the demand is price inelastic. (c) Proportion of income spent on the good: Higher the proportion of income spent on a good, higher is its price elasticity of demand. It is because a change in price of a high priced good has substantial effect on the budget of the consumer. Thus, level of price of the good affects elasticity of demand. Demand for a high priced good (e.g. expensive clothes, mobile phones, etc.) is price-elastic, eD >1, because a change in price of a high priced good has substantial effect on the budget of the consumer. Demand for a low priced good (e.g. salt, toothpaste, match box, newspapers, etc.) is price-inelastic, $\mathrm{eD}<1$ because a very small proportion of a consumer's income	2 - Marks Nature of the Good 2 - Marks Availability of close substitutes 2 Marks Proportion of income spent on the good

