| SET |
|-----|
|-----|

|           | INDIAN SCHOOL MUSCAT         |                |
|-----------|------------------------------|----------------|
|           | HALF YEARLY EXAMINATION 2022 |                |
| CLASS: XI | ECONOMICS (030)              | Max. Marks: 80 |

| Q. No | VALUE POINTS                                                                                                                                                                                                                                                                                     | MARKS<br>SPLIT UP           |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1     | Distribution                                                                                                                                                                                                                                                                                     | 1- Mark                     |
| 2     | Presentation, interpretation                                                                                                                                                                                                                                                                     | 1- Mark                     |
| 3     | (C) Secondary data  OR  (A) Primary data                                                                                                                                                                                                                                                         | 1- Mark                     |
| 4     | (B) They are difficult to interpret and hard to score.                                                                                                                                                                                                                                           | 1- Mark                     |
| 5     | True OR False                                                                                                                                                                                                                                                                                    | 1- Mark                     |
| 6     | (D) The class midpoints                                                                                                                                                                                                                                                                          | 1- Mark                     |
| 7     | Raw data                                                                                                                                                                                                                                                                                         | 1- Mark                     |
| 8     | (A) Chronological Classification                                                                                                                                                                                                                                                                 | 1- Mark                     |
| 9     | (C) Class mark                                                                                                                                                                                                                                                                                   | 1- Mark                     |
| 10    | (A) Arithmetic Mean  OR  (B) The simple average of these two middle values                                                                                                                                                                                                                       | 1- Mark                     |
| 11    | <ol> <li>It presents facts in a definite form.</li> <li>It helps in condensing mass data into a few numerical measures (such as mean, variance etc.)</li> <li>It facilitates comparison.</li> <li>It helps in prediction.</li> <li>It helps in the formulation of plans and policies.</li> </ol> | Any three 1 X 3 = 3 - Marks |



|    | _                                                                                                        |                   |                                    |                              |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|----------------------------------------------------------------------------------------------------------|-------------------|------------------------------------|------------------------------|---------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $\overline{X} = \frac{\Sigma x}{N} =$                                                                    | $=\frac{340}{10}$ | = 34                               | $\overline{\mathbf{X}} = 34$ |                     |                       | finding dx<br>and ∑dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | Assumed                                                                                                  | Mean Me           | ethod                              |                              |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $\overline{X} = A + \frac{\Sigma dx}{N} = 40 + \frac{-60}{10} = 40 - 6$ $\overline{X} = 34$              |                   |                                    |                              |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                          |                   |                                    | OR                           |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                          | Marks             | No. of students (f)                | Mid-<br>value (X)            | dx (X-A)            | fdx                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                          | 0-10              | 3                                  | 5                            | - 30                | -90                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                          | 10-20             | 8                                  | 15                           | - 20                | -160                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                          | 20-30             | 8                                  | 25                           | - 10                | -80                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                          | 30-40             | 10                                 | A 35                         | 0                   | 0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                          | 40-50             | 7                                  | 45                           | 10                  | 70                    | 1 – Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                                                                                                          | 50-60             | 5                                  | 55                           | 20                  | 100                   | Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                                                                                          | 60-70             | 5                                  | 65                           | 30                  | 150                   | 1 Mark –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                                                                                                          | 70-80             | 4 <b>5c 5</b> 0                    | 75                           | 40                  | 160                   | finding dx<br>and ∑fx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | A:416 04:                                                                                                |                   | $\sum f = 50$                      | o4l- o d)                    |                     | $\sum fx = 150$       | 1 – Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | Arithmetic mean (Assumed mean method)                                                                    |                   |                                    |                              |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $\overline{X} = A + \frac{\Sigma dfx}{\Sigma f} = 35 + \frac{150}{50} = 35 + 3 = 38$ $\overline{X} = 38$ |                   |                                    |                              |                     |                       | of values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | 21 50                                                                                                    |                   |                                    |                              |                     |                       | 1- Mark –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | Arithmetic                                                                                               | e mean = 3        | 38                                 |                              |                     |                       | Final answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 15 |                                                                                                          |                   | Marks                              | No. of students (f)          | cf                  |                       | 1-Mark –<br>formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                          |                   | 0-10                               | 6                            | 6                   |                       | 1 Mark –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                                                                                                          |                   | 10-20                              | 16                           | 22                  |                       | finding cf<br>1 – Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |                                                                                                          |                   | 20-30                              | 16                           | 38                  |                       | substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                                                                                                          |                   | 30-40                              | 20                           | 58                  |                       | of values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |                                                                                                          |                   | 40-50                              | 14                           | 72                  |                       | 1- Mark –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |                                                                                                          |                   | 50-60                              | 10                           | 82                  | _                     | Final answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                                                                                                          |                   | 60-70                              | 10                           | 92                  | _                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                          |                   | 70-80                              | 8                            | 100                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | Median                                                                                                   |                   |                                    |                              |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                          |                   | <b>/100</b> \                      |                              |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $M = \left(\frac{N}{2}\right)$ th term $= \left(\frac{100}{2}\right)$ th term $= 50$ th term             |                   |                                    |                              |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | Median Cla                                                                                               |                   | \ /                                |                              |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                          |                   | $\frac{N}{2}$ – cf                 |                              | 50 20               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                          | M =               | $l_1 + \frac{\frac{N}{2} - cf}{f}$ | X i = 30                     | $+\frac{30-38}{22}$ | X 10                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | Median = 3                                                                                               |                   | t                                  |                              | 20                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16 | ł                                                                                                        |                   | le can take an                     | v numerical v                | alue. It may        | take integral values  | $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}$ |
| 16 |                                                                                                          |                   |                                    | •                            | •                   | re not exact fraction |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $=\sqrt{1.414}.$ ),                                                                                      |                   | 1405 (112, 213,                    | , and                        | varuos mai a        | io noi exact machon   | 13 ( V Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | 7 '                                                                                                      |                   | can take only                      | z certain val                | nes Its valu        | e changes only by     | finite $2 - \text{Mark for}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                                                                                                          |                   | -                                  |                              |                     | ake any intermediate  | Disciete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | between the                                                                                              |                   | ioni one value                     | to unotifier by              | 4000 1101 11        | arry micerinicalate   | , 4140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1  | i Delween iii                                                                                            | em.               |                                    |                              |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Variable | Tally bars                                        | Frequency     |
|----------|---------------------------------------------------|---------------|
| 15       | <del>                                      </del> | 14            |
| 16       | <del>                                      </del> | 18            |
| 17       | <del>                                     </del>  | 10            |
| 18       | <del>                                      </del> | 6             |
| 19       |                                                   | 2             |
|          |                                                   | $\sum f = 50$ |

2 Marks for Tally bars and frequency

OR

### **Inclusive class intervals**

In this case, values equal to the lower and upper limits of a class are included in the frequency of that same class. Both the upper and the lower class limits are included in the Inclusive Method.

### **Exclusive class intervals**

In this case, the value equal to either the upper or the lower class limit is excluded from the frequency of that class. Either the upper class limit or the lower class limit is excluded in the Exclusive Method.

| Class Intervals | Tally bars                                        | Frequency     |
|-----------------|---------------------------------------------------|---------------|
| 1 – 6           | <del>                                    </del>   | 11            |
| 7 – 12          | <del>                                      </del> | 9             |
| 13 – 18         | <del>                                     </del>  | 10            |
| 19 – 24         | <del>                                      </del> | 5             |
| 25 - 30         | THH I                                             | 6             |
| 31 - 36         | 1111                                              | 3             |
|                 |                                                   | $\sum f = 44$ |

- 1 Mark for Inclusive
- 1 Mark for Exclusive
- 2 Marks for Class intervals
- 2 Marks for Tally bars and frequency

Pie diagram is a circle divided into various segments showing the percent values of a data series. It is also known as sector diagram.

| Type of food | No. of people | % of people | Angle on Pie |
|--------------|---------------|-------------|--------------|
| North Indian | 150           | 30%         | 108°         |
| South Indian | 100           | 20%         | 72°          |
| Chinese      | 125           | 25%         | 90°          |
| Italian      | 75            | 15%         | 54°          |
| Mexican      | 50            | 10%         | 36°          |
|              | 500           | 100%        | 360°         |

2 Marks for Pie Diagram definition 2 Marks -Conversion of data as % and Angle on Pie 2 Marks for construction of pie diagram.

Check Labelling, title and proper construction.



|    |                                                                                                                                                                                                                                                                            | 1                                | 20              | 20               | 20                     |                                              | Product                                                         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|------------------|------------------------|----------------------------------------------|-----------------------------------------------------------------|
|    |                                                                                                                                                                                                                                                                            | 2                                | 36              | 18               | 16                     |                                              | 1½ - Marks                                                      |
|    |                                                                                                                                                                                                                                                                            | 3                                | 48              | 16               | 12                     |                                              | for Marginal                                                    |
|    |                                                                                                                                                                                                                                                                            | 4                                | 56              | 14               | 8                      |                                              | Product                                                         |
|    |                                                                                                                                                                                                                                                                            | 5                                | 60              | 12               | 4                      |                                              |                                                                 |
|    |                                                                                                                                                                                                                                                                            | 6                                | 60              | 10               | 0                      |                                              |                                                                 |
|    |                                                                                                                                                                                                                                                                            | 7                                | 56              | 8                | -4                     |                                              |                                                                 |
|    |                                                                                                                                                                                                                                                                            |                                  | 0               | R                |                        |                                              |                                                                 |
|    |                                                                                                                                                                                                                                                                            | Units of labour                  | TP of<br>labour | AP               | MP                     |                                              | 44/ 34 4                                                        |
|    |                                                                                                                                                                                                                                                                            | 1                                | 3               | 3                | 3                      |                                              | 1½ - Marks<br>for Total                                         |
|    |                                                                                                                                                                                                                                                                            | 2                                | 8               | 4                | 5                      |                                              | Product                                                         |
|    |                                                                                                                                                                                                                                                                            | 3                                | 15              | 5                | 7                      |                                              | 1½ - Marks                                                      |
|    |                                                                                                                                                                                                                                                                            | 4                                | 21              | 5.25             | 6                      |                                              | for Average                                                     |
|    |                                                                                                                                                                                                                                                                            | 5                                | 24              | 4.8              | 3                      |                                              | Product                                                         |
|    |                                                                                                                                                                                                                                                                            | 6                                | 25              | 4.16             | 1                      |                                              |                                                                 |
| 30 | Production possibility curve is drawn on the assumption that the given resources are fully and efficiently employed.  Due to the earthquake, production facilities are destroyed, which implies loss of productive resources. This will cause the PPC to shift to the left |                                  |                 |                  |                        |                                              | 2 Marks –<br>Explanation<br>2 – Marks<br>diagram                |
|    |                                                                                                                                                                                                                                                                            |                                  |                 |                  |                        |                                              |                                                                 |
|    | Reduction in given Resources  Good-X  Good-X                                                                                                                                                                                                                               |                                  |                 |                  |                        |                                              |                                                                 |
| 31 | <ul><li>2. Giffen goo</li><li>3. Negative</li></ul>                                                                                                                                                                                                                        |                                  |                 |                  | ner                    |                                              | 1 X 4 = 4<br>Marks                                              |
| 32 | Good - X<br>% $\Delta P = 5\%$ , % $\Delta Q = 10\%$<br>$Ep_X = \frac{\% \text{ change in quantity demanded}}{\% \text{change in price}} = \frac{-10\%}{-5\%} = 2$                                                                                                         |                                  |                 |                  |                        | 1-Mark Formula 1-Mark Substitution of values |                                                                 |
|    | $Ep_{x} = 2$ $Good - Y$ % $\Delta P = 20\%$ , % $Ep_{y}$ $Ep_{y} = 0.5$ Good X is more e                                                                                                                                                                                   | $= \frac{\% \text{ change}}{\%}$ |                 | demanded<br>rice | $=\frac{-10\%}{20\%}=$ | 0.5                                          | 1- mark –<br>final answer<br>1- mark –<br>Type of<br>elasticity |

| - |   | • |
|---|---|---|
| • | 1 | ĸ |
| • |   | ш |

Suppose original price to be ₹ 'p' per unit.

 $\Delta Q = 3$  units,  $\Delta P = -1$  Q = 30. Given Ep = -1.5

| Price (₹) | Quantity (units) |
|-----------|------------------|
| P         | 30               |
|           | 33 (30 + 3)      |

Ep = 
$$\frac{\Delta Q}{\Delta P} \times \frac{P}{Q} = -1.5 = \frac{3}{-1} \times \frac{P}{30}$$
  
=  $3P = 45 = \frac{45}{3} = 15$   $P = 15$ 

Original Price P = ₹ 15 per unit

33

The Law of Equi-marginal utility states that the consumer will get maximum satisfaction if the marginal utility of the last rupee of expenditure on each good is the same.

Suppose a consumer consumes only two goods. Let these goods be X and Y. The consumer is in equilibrium when he allocates his income in two goods X and Y in such a manner that he derives maximum satisfaction. Given the consumer's income and prices of the two goods (Px and Py):

The necessary condition for the consumer to be in equilibrium in case of equi-marginal utility will be:

$$\frac{MU_X}{MU_Y} = \frac{P_X}{P_y} = MU$$
 of the last rupee spent on each good

If  $\frac{MU_X}{MU_Y} > \frac{P_X}{P_y}$  the consumer will not be in equilibrium. The satisfaction derived by consuming Commodity X is greater than the satisfaction derived by consuming Commodity Y. The consumer will reallocate his income by spending more on commodity X. Buying more of X reduces MUx. Px remaining unchanged  $\frac{MU_X}{P_X}$  also reduces.

If  $\frac{MU_X}{MU_Y} < \frac{P_X}{P_y}$  the consumer will not be in equilibrium. The satisfaction derived by consuming Commodity Y is greater than the satisfaction derived by consuming Commodity X. The consumer will reallocate his income by spending more on commodity Y. Buying more of Y reduces MUy. Py remaining unchanged  $\frac{MU_y}{P_y}$  also reduces.

#### OR

Consumer's equilibrium means maximum satisfaction level of the consumer, given his money income and prices of the two goods in the market.

The two conditions of consumer's equilibrium under Indifference Curve Analysis (Ordinal Utility Analysis) are:

- 1. Marginal Rate of Substitution (MRS) and Price Ratio must be equal, i.e.  $MRS = \frac{P_x}{P_v}$
- 2. MRS must be diminishing as consumption of good X increases.

Diagrammatically, the two conditions of consumer's equilibrium under indifference curve analysis are:

1-Mark
Formula
2-Marks Substitution
of values and
calculation
1- mark –
final answer

- 2- Marks for the two conditions
- 2 Marks for the diagram
- 2 Marks for the explanation

2- Marks for the two conditions

2 – Marks for the diagram

2 – Marks for the explanation



- 1. Budget line is tangential to a particular indifference Curve at a unique combination of the two goods. It is because if the budget line is tangent to an indifference curve at a point, the slope of the indifference curve and the slope of budget line are equal (i.e., MRS = Px/Py) at that point.
- 2. The indifference curve is strictly convex to the origin at equilibrium. This is because MRS diminishes as consumption of good X increases.

### **34** Change in income of the consumer.

The effect of change in income on demand for a good depends on whether it is a normal good or an inferior good.

**Normal good** is any good whose demand increases as the consumer's income increases, and decreases as the consumer's income decreases.



**Inferior good** is any good whose demand falls as the consumer's income increases, and as the consumer's income decreases, the demand for it rises.



### Change in prices of related goods

Related goods are either substitutes or complements.

**Substitute goods** are those goods which can be used in place of one another, for satisfaction of a particular want. An increase in price of a substitute good makes the given good relatively cheaper and vice versa

**Complementary goods** are those goods which are consumed (or used) jointly/together to satisfy a given want. An increase in price of the complementary good reduces its demand, which in turn decreases the demand for the given good at the same price.

- 3 Marks change in income
- 3 Marks Change in prices of related goods

| SET | В |
|-----|---|
|     |   |

|           | INDIAN SCHOOL MUSCAT         |                |
|-----------|------------------------------|----------------|
|           | HALF YEARLY EXAMINATION 2022 |                |
| CLASS: XI | ECONOMICS (030)              | Max. Marks: 80 |

| SET | VALUE POINTS                                                               | MARKS<br>SPLIT UP                                                                                |  |  |  |  |
|-----|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|
| 1   | (A) Arithmetic Mean  OR  (B) The simple average of these two middle values |                                                                                                  |  |  |  |  |
| 2   | (A) Chronological Classification                                           | 1- Mark                                                                                          |  |  |  |  |
| 3   | Raw data                                                                   | 1- Mark                                                                                          |  |  |  |  |
| 4   | Distribution                                                               | 1- Mark                                                                                          |  |  |  |  |
| 5   | Presentation, interpretation                                               | 1- Mark                                                                                          |  |  |  |  |
| 6   | (C) Secondary data  OR  (A) Primary data                                   |                                                                                                  |  |  |  |  |
| 7   | (D) The class midpoints                                                    |                                                                                                  |  |  |  |  |
| 8   | True OR False                                                              |                                                                                                  |  |  |  |  |
| 9   | (B) They are difficult to interpret and hard to score.                     | 1- Mark                                                                                          |  |  |  |  |
| 10  | (C) Class mark                                                             | 1- Mark                                                                                          |  |  |  |  |
| 11  | Multiple Bar Chart    TOO                                                  | 2 – Marks for<br>Construction<br>1 Mark for<br>Check for<br>Scale,<br>Labelling and<br>Neatness. |  |  |  |  |

Page 1 of 8

|     |                                                                  | y Hist                               | ogram                   |                      |                      | 2 – Marks for          |
|-----|------------------------------------------------------------------|--------------------------------------|-------------------------|----------------------|----------------------|------------------------|
|     | _                                                                | 25                                   |                         | Scale<br>X: lcm = 10 | n .                  | Construction           |
|     |                                                                  |                                      |                         | Y: 1cm = 0           |                      |                        |
|     | - 10                                                             | 20                                   | 22                      |                      |                      | 1 Mark for             |
|     | TAS                                                              | 18                                   |                         |                      |                      | Check for              |
|     | - <u>-                                  </u>                     | 15                                   | 15                      |                      |                      | Scale, Labelling and   |
|     | OF STUDENTS                                                      | 10                                   |                         | .4                   |                      | Neatness.              |
|     | NO. O                                                            | 10                                   |                         |                      |                      | T veathess.            |
|     | Ä                                                                | 8<br>5                               |                         |                      |                      |                        |
|     |                                                                  |                                      |                         |                      |                      |                        |
|     |                                                                  | 0                                    |                         |                      | x                    |                        |
|     |                                                                  |                                      | ASS INTERVAL            |                      |                      |                        |
| 12  | 1. It presents fact                                              |                                      |                         |                      |                      | Any three              |
|     | _                                                                | densing mass dat                     | a into a few nume       | rical mea            | sures (such as mean, | 1 X 3 = 3 -<br>Marks   |
|     | variance etc.)                                                   |                                      |                         |                      |                      | IVIAIKS                |
|     | 3. It facilitates co                                             |                                      |                         |                      |                      |                        |
|     | <ul><li>4. It helps in pred</li><li>5. It helps in the</li></ul> |                                      | ans and policies        |                      |                      |                        |
| 13  | 5. It herps in the                                               |                                      | culate Median           |                      |                      |                        |
| 13  |                                                                  | Car                                  | - Limb Hibaitii         |                      |                      | 1-Mark –               |
|     |                                                                  | Age (in years)                       | No. of persons          | cf                   |                      | formula                |
|     |                                                                  | 20-25                                | 50                      | 50                   |                      | 1 Mark –               |
|     |                                                                  | 25-30                                | 70                      | 120                  |                      | finding cf<br>1 – Mark |
|     |                                                                  |                                      |                         |                      |                      | substitution           |
|     |                                                                  | 30-35                                | 100                     | 220                  |                      | of values              |
|     |                                                                  | 35-40                                | 180                     | 400                  |                      | 1- Mark –              |
|     |                                                                  | 40-45                                | 150                     | 550                  |                      | Final answer           |
|     |                                                                  | 45-50                                | 120                     | 670                  |                      |                        |
|     |                                                                  | 50-55                                | 70                      | 740                  |                      |                        |
|     | 3.5 31                                                           | 55-60                                | 60                      | 800 N                |                      |                        |
|     | Median                                                           | <b>/800</b> \                        |                         |                      |                      |                        |
|     | $M = \left(\frac{N}{2}\right)$ th term =                         | $= \left(\frac{300}{2}\right)$ th te | rm = 400th to           | erm                  |                      |                        |
|     | Median Class = $35-40$                                           | ) - /                                |                         |                      |                      |                        |
|     | $\frac{N}{N}$ – cf                                               | 4.0                                  | 0 220                   |                      |                      |                        |
|     | $M = l_1 + \frac{\frac{N}{2} - cf}{f} X i$                       | $= 35 + \frac{40}{}$                 | $\frac{0-220}{100}$ X 5 | = 35 + 5             | = 40                 |                        |
|     | f                                                                |                                      | 180                     |                      |                      |                        |
|     | Median = 40                                                      |                                      |                         |                      |                      |                        |
|     |                                                                  |                                      |                         |                      |                      |                        |
| 1 / | 1. Primary data                                                  |                                      |                         |                      |                      | 1 X4 = 4 -             |
| 14  | 2. False                                                         |                                      |                         |                      |                      | Marks                  |
|     | 3. 10 years                                                      |                                      |                         |                      |                      |                        |
|     | 4. (A) Census of                                                 | India and NSSO                       |                         |                      |                      |                        |
|     |                                                                  |                                      |                         |                      |                      |                        |
|     |                                                                  |                                      |                         |                      |                      |                        |
|     |                                                                  |                                      |                         |                      |                      |                        |

| _  | 1                                                                                             |                                       | ,                         |          |                           |                   |            | , ,                     |
|----|-----------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|----------|---------------------------|-------------------|------------|-------------------------|
| 15 |                                                                                               | S.N.                                  | Marks (x)                 | Assun    |                           | dx                |            | 2-Marks –               |
|    |                                                                                               |                                       |                           | Mean     | (A)                       | (x-A)             |            | Direct                  |
|    |                                                                                               | 1                                     | 15                        |          |                           | - 25              |            | Method<br>formula       |
|    |                                                                                               | 2                                     | 20                        |          |                           | - 20              |            | 1 Mark –                |
|    |                                                                                               | 3                                     | 30                        |          |                           | - 10              |            | finding $\sum x \&$     |
|    |                                                                                               | 4                                     | 22                        |          |                           | - 18              |            | N                       |
|    |                                                                                               | 5                                     | 25                        |          |                           | - 15              |            | 1 – Mark                |
|    |                                                                                               | 6                                     | 18                        |          |                           | -22               |            | substitution            |
|    |                                                                                               | 7                                     | 40                        | 40       | )                         | 0                 |            | of values &             |
|    |                                                                                               | 8                                     | 50                        |          |                           | 10                |            | Final answer            |
|    |                                                                                               | 9                                     | 55                        |          |                           | 15                |            | 2 – Marks –             |
|    |                                                                                               | 10                                    | 65                        |          |                           | 25                |            | Assumed                 |
|    |                                                                                               | N= 10                                 | $\sum x = 340$            |          | Σ                         | dx = -60          |            | mean Method             |
|    |                                                                                               |                                       |                           |          |                           |                   |            | 1-Mark –                |
|    | Direct Me                                                                                     | thad                                  |                           |          |                           |                   |            | formula                 |
|    |                                                                                               |                                       |                           |          |                           |                   |            | 1 Mark –                |
|    | $\overline{X} = \frac{\Sigma X}{X} =$                                                         | $=\frac{340}{10}=34$                  | $\overline{\mathbf{X}} =$ | = 34     |                           |                   |            | finding dx              |
|    | N N                                                                                           | 10                                    | Α -                       | - 51     |                           |                   |            | and ∑dx                 |
|    | A 1                                                                                           | N                                     | 1                         |          |                           |                   |            |                         |
|    |                                                                                               | Mean Method                           |                           |          |                           |                   |            |                         |
|    | $\left  \begin{array}{c} \overline{\mathbf{v}} - \mathbf{\Lambda} \end{array} \right  \Sigma$ | $\frac{2dx}{N} = 40 +$                | -60                       | 6        | <u>v</u> _                | 2.4               |            |                         |
|    | X – A + -                                                                                     | N - 40 +                              | ${10}$ - 40               | - 0      | Λ —                       | 34                |            | 1 – Mark                |
|    |                                                                                               |                                       |                           | OR       |                           |                   |            | Formula                 |
|    |                                                                                               |                                       | No. of                    | Mid-     |                           |                   | 7          | 1 Mark –                |
|    |                                                                                               | Marks                                 |                           | lue (X)  | dx (X-A                   | ) fdx             |            | finding dx<br>and ∑fx   |
|    |                                                                                               | 0-10                                  | 3                         | 5        | - 30                      | -90               | 1          | 1 – Mark                |
|    |                                                                                               | 10-20                                 | 8                         | 15       | - 20                      | -160              | 1          | substitution            |
|    |                                                                                               | 20-30                                 | 8                         | 25       | - 10                      | -80               | 1          | of values               |
|    |                                                                                               | 30-40                                 |                           | 35       | 0                         | 0                 | _          | 1- Mark –               |
|    |                                                                                               | 40-50                                 | 7                         | 45       | 10                        | 70                | =          | Final answer            |
|    |                                                                                               |                                       | 5                         | 55       |                           |                   | -          |                         |
|    |                                                                                               | 50-60                                 |                           |          | 20                        | 100               | 4          |                         |
|    |                                                                                               | 60-70                                 | 5                         | 65       | 30                        | 150               | 4          |                         |
|    |                                                                                               | 70-80                                 | 4                         | 75       | 40                        | 160               | 4          |                         |
|    |                                                                                               |                                       | f = 50                    |          |                           | $\sum fx = 150$   |            |                         |
|    |                                                                                               | mean (Assum                           |                           |          |                           |                   |            |                         |
|    | $ \bar{\mathbf{x}} - \mathbf{A} \perp \Sigma $                                                | $\frac{\text{2dfx}}{\Sigma f} = 35 +$ | 150 – 2E                  | ± 2 − 20 | g $\overline{\mathbf{v}}$ | - 38              |            |                         |
|    | A = A + A                                                                                     | $\Sigma f$ = 35 +                     | 50 - 55                   | , 5 – 5  | υ Λ                       | <i>—</i> 30       |            |                         |
|    |                                                                                               |                                       |                           |          |                           |                   |            |                         |
|    | Arithmetic                                                                                    | emean = 38                            |                           |          |                           |                   |            |                         |
|    |                                                                                               |                                       |                           |          |                           |                   |            |                         |
| 16 |                                                                                               |                                       |                           |          | ents show                 | ing the percent v | alues of a | 2 Marks for             |
|    | data series.                                                                                  | It is also know                       |                           |          |                           |                   | 7          | Pie Diagram             |
|    |                                                                                               | Type of food                          | No. of peo                | ole %    | of people                 |                   | _          | definition              |
|    |                                                                                               | North Indian                          | 150                       |          | 30%                       | 108°              | _          | 2 Marks -<br>Conversion |
|    |                                                                                               | South Indian                          | 100                       |          | 20%                       | 72°               |            | of data as %            |
|    |                                                                                               | Chinese                               | 125                       |          | 25%                       | 90°               |            | and Angle on            |
|    |                                                                                               | Italian                               | 75                        |          | 15%                       | 54°               | 1          | Pie                     |
|    |                                                                                               | Mexican                               | 50                        |          | 10%                       | 36°               | 1          | 2 Marks for             |
|    |                                                                                               |                                       | 500                       | 1        | 100%                      | 360°              | 1          | construction            |
|    |                                                                                               |                                       | 500                       | _   _    | 100 /0                    | 500               | _          | of pie                  |



diagram.

Check Labelling, title and proper construction.

A continuous variable can take any numerical value. It may take integral values (1, 2, 3, 4, ...), fractional values (1/2, 2/3, 3/4, ...), and values that are not exact fractions  $(\sqrt{2} = \sqrt{1.414})$ , etc.

nite 1 – Mark for Exclusive

A discrete variable can take only certain values. Its value changes only by finite "jumps". It "jumps" from one value to another but does not take any intermediate value between them.

2 – Marks for Class intervals

1 - Mark for

Inclusive

- Variable Tally bars Frequency 14 15 ++++ ++++ | | | | 18 16 17 10 18 HHI6 19 2  $\sum f = 50$
- 2 Marks for Tally bars and frequency

OR

- (a) **Chronological classification:** The raw data grouped according to time. Such a classification is known as a Chronological Classification. Data is classified either in ascending or in descending order with reference to time such as years, quarters, months, weeks, etc.
- (b) **Spatial classification:** Data classified with reference to geographical locations such as countries, states, cities, districts, etc.

| Variable | Tally bars                                        | Frequency     |
|----------|---------------------------------------------------|---------------|
| 15 - 20  | Ш                                                 | 4             |
| 20 - 25  |                                                   | 4             |
| 25 - 30  |                                                   | 10            |
| 30 - 35  | <del>                                      </del> | 8             |
| 35 - 40  | HH                                                | 5             |
| 40 – 45  | <del>                                     </del>  | 9             |
| 45 - 50  |                                                   | 3             |
| 50 - 55  |                                                   | 3             |
|          |                                                   | $\sum f = 40$ |

|    | PART – B: INTRO                                                                                                                                                                                                                                                     | DUCTORY         | MICRO       | ECONOM      | ICS (40 Marks)    |                                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------|-------------------|------------------------------------|
| 18 | (C) Average product                                                                                                                                                                                                                                                 |                 |             |             | ,                 | 1- Mark                            |
| 19 | (C)A change in quantity deman                                                                                                                                                                                                                                       | nded.           |             |             |                   |                                    |
|    | (D) D'-4-:14:                                                                                                                                                                                                                                                       | O               | R           |             |                   | 1- Mark                            |
| 20 | (B) Distribution of Income (A) Substitutes                                                                                                                                                                                                                          |                 |             |             |                   |                                    |
| 20 | (11) Substitutes                                                                                                                                                                                                                                                    | O               | R           |             |                   | 1- Mark                            |
|    | (B) Complements                                                                                                                                                                                                                                                     |                 |             |             |                   |                                    |
| 21 | (B) Scarcity of economic resou                                                                                                                                                                                                                                      |                 |             |             |                   |                                    |
|    | (A) Economic 1-1                                                                                                                                                                                                                                                    | 0 المعادلة نعنا |             | olei '      | ha                | 1- Mark                            |
| 22 | (A) Economic behaviour of inc                                                                                                                                                                                                                                       |                 |             | _           | LS                |                                    |
| 22 | (C) Relative prices and availab                                                                                                                                                                                                                                     |                 |             |             |                   | 1- Mark                            |
| 23 | (B) It shows various combinat given amount of resources                                                                                                                                                                                                             | ion of two go   | ods which a | n economy c | an produce with a | 1- Mark                            |
| 24 | (A) Inverse                                                                                                                                                                                                                                                         |                 |             |             |                   | 1- Mark                            |
| 25 | (B) Greater application of varia                                                                                                                                                                                                                                    | able factors    |             |             |                   | 1- Mark                            |
| 26 | (D) Assertion is false but Reason is true                                                                                                                                                                                                                           |                 |             |             |                   |                                    |
| 27 | (B) 25 utils                                                                                                                                                                                                                                                        |                 |             |             |                   | 1- Mark                            |
| 28 | Units of                                                                                                                                                                                                                                                            | TP of           | AP          | MD          |                   | 1½ - Marks                         |
|    | labour                                                                                                                                                                                                                                                              | labour          |             | MP          |                   | for Average                        |
|    | 1                                                                                                                                                                                                                                                                   | 20              | 20          | 20          |                   | Product<br>1½ - Marks              |
|    | 3                                                                                                                                                                                                                                                                   | 36<br>48        | 18<br>16    | 16<br>12    |                   | for Marginal                       |
|    | 4                                                                                                                                                                                                                                                                   | 56              | 14          | 8           |                   | Product                            |
|    | 5                                                                                                                                                                                                                                                                   | 60              | 12          | 4           |                   |                                    |
|    | 6                                                                                                                                                                                                                                                                   | 60              | 10          | 0           |                   |                                    |
|    | 7                                                                                                                                                                                                                                                                   | 56              | 8           | -4          |                   |                                    |
|    | TT :                                                                                                                                                                                                                                                                | 0               | R           | <u> </u>    |                   |                                    |
|    | Units of labour                                                                                                                                                                                                                                                     | TP of<br>labour | AP          | MP          |                   |                                    |
|    | 1                                                                                                                                                                                                                                                                   | 3               | 3           | 3           |                   | 1½ - Marks                         |
|    | 2                                                                                                                                                                                                                                                                   | 8               | 4           | 5           |                   | for Total<br>Product               |
|    | 3                                                                                                                                                                                                                                                                   | 15              | 5           | 7           |                   | 1½ - Marks                         |
|    | 4                                                                                                                                                                                                                                                                   | 21              | 5.25        | 6           |                   | for Average                        |
|    | 5                                                                                                                                                                                                                                                                   | 24              | 4.8         | 3           |                   | Product                            |
|    | 6                                                                                                                                                                                                                                                                   | 25              | 4.16        | 1           |                   | 2.34 1 2                           |
| 29 | The given statement is true. Scarcity of resources is the root cause of an economic problem. We live in a world of scarcity. All of us want better food, clothing, housing, schooling, Entertainment, etc. But resources are not enough to meet all our wants. Even |                 |             |             |                   | 3-Marks for<br>the<br>explanation. |

|     | 41                                                                                                                                                                |                                         | Convo               |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------|--|--|
|     | the richest economy (like USA) cannot satisf                                                                                                                      | •                                       | Can use             |  |  |
|     | resources gives rise to the problem of choice, i.e                                                                                                                | •                                       | example also<br>for |  |  |
|     | available in plenty, there would not have been a                                                                                                                  | ny problem of choice.                   | explanation.        |  |  |
| 20  |                                                                                                                                                                   |                                         | 1-Mark              |  |  |
| 30  | Price (₹)                                                                                                                                                         | Quantity (units)                        | Formula             |  |  |
|     |                                                                                                                                                                   | <u> </u>                                | 1-Mark              |  |  |
|     | 1                                                                                                                                                                 | 40                                      | Substitution        |  |  |
|     | ?                                                                                                                                                                 | 36                                      | of values           |  |  |
|     | $\int_{P_{P}} \Delta Q P = 1 - 4 V 1$                                                                                                                             |                                         | 1- mark –           |  |  |
|     | $\Gamma P = \frac{\Gamma}{\Delta P} \Lambda \frac{\Gamma}{Q} = \Gamma = \frac{\Gamma}{\Delta P} \Lambda \frac{\Lambda}{40}$                                       |                                         | final answer        |  |  |
|     | $Ep = \frac{\Delta Q}{\Delta P} \times \frac{P}{Q} = 1 = \frac{4}{\Delta P} \times \frac{1}{40}$<br>= $10\Delta P = 1$ $\Delta P = \frac{1}{10} = 0.10$ $P = 0$ . | 10                                      | 1- mark –           |  |  |
|     | $\Delta P = \frac{1}{10} = 0.10$ $P = 0.$                                                                                                                         | 10                                      | Type of             |  |  |
|     | Original Price P = ₹1 per unit                                                                                                                                    |                                         | elasticity          |  |  |
|     | New Price = $P + \Delta P = 1 + 0.10 = ₹1.10p$                                                                                                                    |                                         |                     |  |  |
|     |                                                                                                                                                                   |                                         | 1-Mark              |  |  |
|     | OR                                                                                                                                                                |                                         | Formula             |  |  |
|     | Price (₹)                                                                                                                                                         | Quantity (units)                        | 2-Marks -           |  |  |
|     | 10                                                                                                                                                                | 40                                      | Substitution        |  |  |
|     | ΔP = ₹ 2                                                                                                                                                          | ?                                       | of values and       |  |  |
|     |                                                                                                                                                                   | ·                                       | calculation         |  |  |
|     | $Ep = \frac{\Delta Q}{\Delta P} \times \frac{P}{Q} = 2 = \frac{\Delta Q}{2} \times \frac{10}{40}$                                                                 |                                         | 1- mark –           |  |  |
|     | ~                                                                                                                                                                 |                                         | final answer        |  |  |
|     | $=\Delta Q = 16$                                                                                                                                                  |                                         |                     |  |  |
|     | Original Quantity = 40Kg                                                                                                                                          | •,                                      |                     |  |  |
|     | New Quantity = $Q + \Delta Q = 40 + 16 = 56 \text{ Uz}$                                                                                                           | nits                                    |                     |  |  |
| 2.1 | Due de sélecte en establishe en en de e                                                                                                                           |                                         | 2 Marks –           |  |  |
| 31  | Production possibility curve is drawn on the a                                                                                                                    | ssumption that the given resources are  | Explanation         |  |  |
|     | fully and efficiently employed.                                                                                                                                   |                                         |                     |  |  |
|     | Due to the earthquake, production facilities are destroyed, which implies loss of                                                                                 |                                         |                     |  |  |
|     | productive resources. This will cause the PPC to shift to the left                                                                                                |                                         |                     |  |  |
|     | - †                                                                                                                                                               |                                         | 2 + 2 = 4           |  |  |
|     | a a                                                                                                                                                               |                                         | Marks               |  |  |
|     | <i>a</i> <sub>1</sub>                                                                                                                                             |                                         |                     |  |  |
|     | ×                                                                                                                                                                 |                                         |                     |  |  |
|     | Y-boac Y                                                                                                                                                          |                                         |                     |  |  |
|     | 8                                                                                                                                                                 | Given                                   |                     |  |  |
|     | Reduction in resources                                                                                                                                            |                                         |                     |  |  |
|     | given Resources                                                                                                                                                   | \ \                                     |                     |  |  |
|     |                                                                                                                                                                   | X                                       |                     |  |  |
|     | O Good-X                                                                                                                                                          | b <sub>1</sub> b                        |                     |  |  |
| 22  | 1. (D) The prices of goods and the income                                                                                                                         | of consumer                             | 1 X 4 = 4           |  |  |
| 32  | 2. Giffen goods                                                                                                                                                   | or companior                            | Marks               |  |  |
|     | 3. Negative                                                                                                                                                       |                                         |                     |  |  |
|     | 4. (B) Leftward shift of the demand curve                                                                                                                         |                                         |                     |  |  |
| 33  | ` '                                                                                                                                                               | ning unchanged, there is a negative (or | 2 – Marks           |  |  |
|     | Law of Demand states that other things remaining unchanged, there is a negative (or inverse) relation between demand for a commodity and its price.               |                                         |                     |  |  |
|     | In other words, when price of the commodity increases, demand for it falls and when                                                                               |                                         |                     |  |  |
|     | price of the commodity decreases, demand for                                                                                                                      |                                         | 2 – Marks           |  |  |
|     | same.                                                                                                                                                             | the second remaining the                | Law of              |  |  |
|     | 1. Law of diminishing MU (Principle of                                                                                                                            | f MU = Price): As we consume more       | diminishing         |  |  |
| L   |                                                                                                                                                                   | = === = = ==== === === === === === ===  |                     |  |  |

| and more units of a commodity, marginal utility (MU) of each successive unit    |
|---------------------------------------------------------------------------------|
| consumed goes on diminishing due to the operation of law of diminishing         |
| marginal utility. Therefore, we will be willing to pay less for each successive |
| unit. Thus, we will buy more units of a commodity only when its price falls.    |

- 2. **Income effect**: When price of a good falls, the purchasing power (real income) of the consumer increases as he will be able to purchase more quantity of the good with the same money income. This phenomenon is called as income effect.
- 3. **Substitution effect**: When price of good X falls, it becomes relatively cheaper than good Y. So, the consumer maximizes his utility by substituting good X for good Y. This phenomenon is called as substitution effect

MU
1 – Mark
Income effect
1 – Mark
Substitution
effect

The Law of Equi-marginal utility states that the consumer will get maximum satisfaction if the marginal utility of the last rupee of expenditure on each good is the same.

34

Suppose a consumer consumes only two goods. Let these goods be X and Y. The consumer is in equilibrium when he allocates his income in two goods X and Y insuch a manner that he derives maximum satisfaction. Given the consumer's income and prices of the two goods (Px and Py):

The necessary condition for the consumer to be in equilibrium in case of equi-marginal utility will be:

$$\frac{MU_X}{MU_Y} = \frac{P_X}{P_Y} = MU$$
 of the last rupee spent on each good

If  $\frac{MU_X}{MU_Y} > \frac{P_X}{P_y}$  the consumer will not be in equilibrium. The satisfaction derived by consuming Commodity X is greater than the satisfaction derived by consuming Commodity Y. The consumer will reallocate his income by spending more on commodity X. Buying more of X reduces MUx. Px remaining unchanged  $\frac{MU_X}{P_X}$  also reduces.

If  $\frac{MU_X}{MU_Y} < \frac{P_X}{P_y}$  the consumer will not be in equilibrium. The satisfaction derived by consuming Commodity Y is greater than the satisfaction derived by consuming Commodity X. The consumer will reallocate his income by spending more on commodity Y. Buying more of Y reduces MUy. Py remaining unchanged  $\frac{MU_y}{P_y}$  also reduces.

### OR

Consumer's equilibrium means maximum satisfaction level of the consumer, given his money income and prices of the two goods in the market.

The two conditions of consumer's equilibrium under Indifference Curve Analysis (Ordinal Utility Analysis) are:

- 1. Marginal Rate of Substitution (MRS) and Price Ratio must be equal, i.e.  $\text{MRS} = \frac{P_x}{P_v}$
- 2. MRS must be diminishing as consumption of good X increases.

Diagrammatically, the two conditions of consumer's equilibrium under indifference curve analysis are:

2- Marks for the two conditions 2 – Marks for the diagram 2 – Marks for the

explanation

2- Marks for the two conditions 2 – Marks for the diagram 2 – Marks for the

explanation



- 1. Budget line is tangential to a particular indifference Curve at a unique combination of the two goods. It is because if the budget line is tangent to an indifference curve at a point, the slope of the indifference curve and the slope of budget line are equal (i.e., MRS = Px/Py) at that point.
- 2. The indifference curve is strictly convex to the origin at equilibrium. This is because MRS diminishes as consumption of good X increases.

## INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2022

CLASS: XI **ECONOMICS (030)** Max. Marks: 80

| Q. No | VALUE POINTS                                                                                                                                                                                                                                                                                                 |                    |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|
| 1     | True OR                                                                                                                                                                                                                                                                                                      | 1- Mark            |  |  |  |
|       | False                                                                                                                                                                                                                                                                                                        | 1- Wark            |  |  |  |
| 2     | (D) The class midpoints                                                                                                                                                                                                                                                                                      | 1- Mark            |  |  |  |
| 3     | (A) Chronological Classification                                                                                                                                                                                                                                                                             | 1- Mark            |  |  |  |
| 4     | (C) Class mark                                                                                                                                                                                                                                                                                               | 1- Mark            |  |  |  |
| 5     | Raw data                                                                                                                                                                                                                                                                                                     |                    |  |  |  |
| 6     | (A) Arithmetic Mean  OR                                                                                                                                                                                                                                                                                      | 1- Mark            |  |  |  |
|       | (B)The simple average of these two middle values                                                                                                                                                                                                                                                             |                    |  |  |  |
| 7     | Distribution                                                                                                                                                                                                                                                                                                 | 1- Mark            |  |  |  |
| 8     | Presentation, interpretation                                                                                                                                                                                                                                                                                 | 1- Mark            |  |  |  |
| 9     | (C) Secondary data                                                                                                                                                                                                                                                                                           |                    |  |  |  |
|       | OR (A) Primary data                                                                                                                                                                                                                                                                                          | 1- Mark            |  |  |  |
| 10    | (B) They are difficult to interpret and hard to score.                                                                                                                                                                                                                                                       | 1- Mark            |  |  |  |
| 11    | <ol> <li>It presents facts in a definite form.</li> <li>It helps in condensing mass data into a few numerical measures (such as mean, variance etc.)</li> <li>It facilitates comparison.</li> <li>It helps in prediction.</li> <li>It helps in the formulation of plans and policies. (any three)</li> </ol> | 1 X 3 = 3<br>Marks |  |  |  |



# **Assumed Mean Method** $\overline{X} = A + \frac{\Sigma dx}{N} = 40 + \frac{-60}{10} = 40 - 6$ $\overline{X} = 34$ OR

| Marks | No. of students (f) | Mid-<br>value (X) | dx (X-A) | fdx             |
|-------|---------------------|-------------------|----------|-----------------|
| 0-10  | 3                   | 5                 | - 30     | -90             |
| 10-20 | 8                   | 15                | - 20     | -160            |
| 20-30 | 8                   | 25                | - 10     | -80             |
| 30-40 | 10                  | A 35              | 0        | 0               |
| 40-50 | 7                   | 45                | 10       | 70              |
| 50-60 | 5                   | 55                | 20       | 100             |
| 60-70 | 5                   | 65                | 30       | 150             |
| 70-80 | 4                   | 75                | 40       | 160             |
|       | $\sum f = 50$       |                   |          | $\sum fx = 150$ |

Arithmetic mean (Assumed mean mthod)

$$\overline{X} = A + \frac{\Sigma dfx}{\Sigma f} = 35 + \frac{150}{50} = 35 + 3 = 38$$
  $\overline{X} = 38$ 

Arithmetic mean = 38

1 - MarkFormula 1 Mark – finding dx and ∑fx 1 - Marksubstitution of values 1- Mark -

Final answer

| Marks | No. of students | cf    |
|-------|-----------------|-------|
| 0-5   | 4               | 4     |
| 5-10  | 6               | 10    |
| 10-15 | 10              | 20    |
| 15-20 | 10              | 30    |
| 20-25 | 25              | 55    |
| 25-30 | 22              | 77    |
| 30-35 | 18              | 95    |
| 35-40 | 5               | 100 N |

1-Mark – formula 1 Mark – finding cf 1 - Marksubstitution of values 1- Mark -Final answer

### Median

14

$$M = \left(\frac{N}{2}\right)$$
 th term  $= \left(\frac{100}{2}\right)$  th term  $= 50$ th term

Median Class = 20 - 25

$$M = l_1 + \frac{\frac{N}{2} - cf}{f} X i$$
 = 20 +  $\frac{50 - 30}{25} X 5$  = 20 + 4 = 24

### Median = 24

- 1. Primary data 15
  - 2. False
  - 3. 10 years
  - 4. (A) Census of India and NSSO
- A continuous variable can take any numerical value. It may take integral values (1, 2, 16 3, 4, ...), fractional values (1/2, 2/3, 3/4, ...), and values that are not exact fractions ( $\sqrt{2}$

1 X4 = 4 -Marks

2 - Marks forcontinuous

| — v | <br>.т 1 | т. | <br>etc. |
|-----|----------|----|----------|

A discrete variable can take only certain values. Its value changes only by finite "jumps". It "jumps" from one value to another but does not take any intermediate value between them.

| Variable | Tally bars                                      | Frequency     |
|----------|-------------------------------------------------|---------------|
| 15       |                                                 | 14            |
| 16       |                                                 | 18            |
| 17       |                                                 | 10            |
| 18       | <del>                                    </del> | 6             |
| 19       |                                                 | 2             |
|          |                                                 | $\sum f = 50$ |

2 – Mark for Discrete

2 Marks for Tally bars and frequency

### OR

### **Inclusive class intervals**

In this case, values equal to the lower and upper limits of a class are included in the frequency of that same class. Both the upper and the lower class limits are included in the Inclusive Method.

### **Exclusive class intervals**

17

In this case, the value equal to either the upper or the lower class limit is excluded from the frequency of that class. Either the upper class limit or the lower class limit is excluded in the Exclusive Method.

| Class Intervals | Tally bars                                        | Frequency     |
|-----------------|---------------------------------------------------|---------------|
| 1 – 6           | <del>                                      </del> | 11            |
| 7 – 12          | <del>                                      </del> | 9             |
| 13 – 18         | <del>                                      </del> | 10            |
| 19 - 24         | <del>                                      </del> | 5             |
| 25 - 30         | <del>                                      </del> | 6             |
| 31 - 36         |                                                   | 3             |
|                 |                                                   | $\sum f - AA$ |

1 – Mark for Inclusive

1 – Mark for Exclusive

2 – Marks for Class intervals

2 Marks for Tally bars and frequency

Pie diagram is a circle divided into various segments showing the percent values of a data series. It is also known as sector diagram.

| Type of food | No. of people | % of people | Angle on Pie |
|--------------|---------------|-------------|--------------|
| North Indian | 150           | 30%         | 108°         |
| South Indian | 100           | 20%         | 72°          |
| Chinese      | 125           | 25%         | 90°          |
| Italian      | 75            | 15%         | 54°          |
| Mexican      | 50            | 10%         | 36°          |
|              | 500           | 100%        | 360°         |

2 Marks for Pie Diagram definition 2 Marks -Conversion of data as % and Angle on Pie 2 Marks for construction of pie diagram.

Check Labelling, title and proper construction.



|    |                                                                                                   | nits of TP of                              | AP             | MP                    |                    | 1½ - Marks for           |  |  |
|----|---------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|-----------------------|--------------------|--------------------------|--|--|
|    | <u>l</u> ;                                                                                        | abour labour                               |                |                       | _                  | Average<br>Product       |  |  |
|    |                                                                                                   | 1 20                                       | 20             | 20                    | -                  | 1½ - Marks for           |  |  |
|    |                                                                                                   | 2 36                                       | 18             | 16                    | -                  | Marginal                 |  |  |
|    |                                                                                                   | 3 48                                       | 16             | 12                    | -                  | Product                  |  |  |
|    |                                                                                                   | 4 56                                       | 14             | 8                     | -                  |                          |  |  |
|    |                                                                                                   | 5 60                                       | 12             | 4                     | <br> -             |                          |  |  |
|    |                                                                                                   | 6 60                                       | 10             | 0                     | <br> -             |                          |  |  |
| 29 |                                                                                                   | 7 56                                       | 8              | -4                    | ]                  |                          |  |  |
|    | OK                                                                                                |                                            |                |                       |                    |                          |  |  |
|    |                                                                                                   | nits of TP of                              | AP             | MP                    |                    |                          |  |  |
|    | <u>l</u> :                                                                                        | abour labour                               |                |                       | <br> -             | 1½ - Marks for           |  |  |
|    |                                                                                                   | 1 3                                        | 3              | 3                     | <u> </u>           | Total Product            |  |  |
|    |                                                                                                   | 2 8                                        | 4              | 5                     | <br> -             | 1½ - Marks for           |  |  |
|    |                                                                                                   | 3 15                                       | 5              | 7                     | <br> -             | Average                  |  |  |
|    |                                                                                                   | 4 21                                       | 5.25           | 6                     | -                  | Product                  |  |  |
|    |                                                                                                   | 5 24                                       | 4.8            | 3                     | -                  |                          |  |  |
|    |                                                                                                   | 6 25                                       | 4.16           | 1                     |                    |                          |  |  |
|    |                                                                                                   | of goods and the inc                       | come of consu  | mer                   |                    | 1 X 4 = 4                |  |  |
| 30 | 2. Giffen goods                                                                                   |                                            |                |                       |                    | Marks                    |  |  |
|    | 3. Negative                                                                                       |                                            |                |                       |                    |                          |  |  |
|    |                                                                                                   | hift of the demand c                       | urve           |                       |                    | 4.3.6.1                  |  |  |
|    | Good - X                                                                                          | 100/                                       |                |                       |                    | 1-Mark                   |  |  |
|    | $\%\Delta P = 5\%, \%\Delta Q =$                                                                  | = 10%<br>0/ abananin avanti                |                | 1.00/                 |                    | Formula<br>1-Mark        |  |  |
|    | $En_{\mathbf{v}} =$                                                                               | % change in quanti                         | ity demanded   | $\frac{-10\%}{-10\%}$ | = 2                | Substitution of          |  |  |
|    |                                                                                                   | %change in                                 | price          | <b>–</b> 5%           | _                  | values                   |  |  |
|    | $\mathbf{E}\mathbf{p}_{\mathbf{x}}=2$                                                             |                                            |                |                       |                    | 1- mark – final          |  |  |
|    |                                                                                                   |                                            |                |                       |                    | answer                   |  |  |
|    | Good - Y                                                                                          | 100                                        |                |                       |                    | 1- mark – Type           |  |  |
|    | $\%\Delta P = 20\%, \%\Delta Q$                                                                   |                                            | 3 3. 3         | 1.007                 |                    | of elasticity            |  |  |
|    | $Ep_y = \frac{9}{2}$                                                                              | % change in quantit                        |                | = =                   | = 0.5              |                          |  |  |
|    | _                                                                                                 | %change in <sub>l</sub>                    | price          | 20%                   | 0.0                |                          |  |  |
|    | $\mathbf{Ep_y} = 0.5$                                                                             |                                            |                |                       |                    |                          |  |  |
|    | Good X is more elastic                                                                            | c since $\mathbf{Ep_x} > \mathbf{Ep_{xy}}$ |                |                       |                    |                          |  |  |
| 31 |                                                                                                   | ·                                          |                |                       |                    |                          |  |  |
|    |                                                                                                   |                                            | OR             |                       |                    | 1-Mark                   |  |  |
|    |                                                                                                   |                                            |                |                       |                    | Formula                  |  |  |
|    |                                                                                                   |                                            |                |                       |                    | 2-Marks -                |  |  |
|    |                                                                                                   | Price (₹)                                  | Quantit        | y (units)             |                    | Substitution of          |  |  |
|    |                                                                                                   | 10                                         | 8              | 0                     |                    | values and               |  |  |
|    | ΛF                                                                                                | P = 20%  of  ₹10 = ₹2                      |                | ?                     |                    | calculation              |  |  |
|    |                                                                                                   |                                            |                |                       |                    | 1- mark – final          |  |  |
|    | $Ep = \frac{\Delta Q}{\Delta P} \times \frac{P}{Q} = 1 = \frac{\Delta Q}{2} \times \frac{10}{80}$ |                                            |                |                       |                    | answer                   |  |  |
|    |                                                                                                   |                                            |                |                       |                    |                          |  |  |
|    | $=\Delta Q = 16$                                                                                  |                                            |                |                       |                    |                          |  |  |
|    | Original Quantity = 80                                                                            |                                            | (A Ilmita      |                       |                    |                          |  |  |
|    | New Quantity = $Q - A$                                                                            | 2Q - 00 + 10 = 0                           | ) UIIIIS       |                       |                    |                          |  |  |
|    | İ                                                                                                 |                                            |                |                       |                    | 1                        |  |  |
|    | Production possibility                                                                            | curve is drawn on                          | the accumption | n that the a          | iven recourses are | 2 Marke =                |  |  |
| 32 | Production possibility fully and efficiently en                                                   |                                            | the assumption | on that the g         | iven resources are | 2 Marks –<br>Explanation |  |  |

Due to the earthquake, production facilities are destroyed, which implies loss of productive resources. This will cause the PPC to shift to the left



2 – Marks diagram

2 + 2 = 4 Marks

The Law of Equi-marginal utility states that the consumer will get maximum satisfaction if the marginal utility of the last rupee of expenditure on each good is the same.

Suppose a consumer consumes only two goods. Let these goods be X and Y. The consumer is in equilibrium when he allocates his income in two goods X and Y insuch a manner that he derives maximum satisfaction. Given the consumer's income and prices of the two goods (Px and Py):

The necessary condition for the consumer to be in equilibrium in case of equi-marginal utility will be:

$$\frac{MU_X}{MU_Y} = \frac{P_X}{P_y} = MU \text{ of the last rupee spent on each good}$$

If  $\frac{MU_X}{MU_Y} > \frac{P_X}{P_y}$  the consumer will not be in equilibrium. The satisfaction derived by consuming Commodity X is greater than the satisfaction derived by consuming Commodity Y. The consumer will reallocate his income by spending more on commodity X. Buying more of X reduces MUx. Px remaining unchanged  $\frac{MU_X}{P_X}$  also reduces.

If  $\frac{MU_X}{MU_Y} < \frac{P_X}{P_y}$  the consumer will not be in equilibrium. The satisfaction derived by consuming Commodity Y is greater than the satisfaction derived by consuming Commodity X. The consumer will reallocate his income by spending more on commodity Y. Buying more of Y reduces MUy. Py remaining unchanged  $\frac{MU_y}{P_y}$  also reduces.

### OR

Consumer's equilibrium means maximum satisfaction level of the consumer, given his money income and prices of the two goods in the market.

The two conditions of consumer's equilibrium under Indifference Curve Analysis (Ordinal Utility Analysis) are:

- 1. Marginal Rate of Substitution (MRS) and Price Ratio must be equal, i.e.  $MRS = \frac{P_x}{P_v}$
- 2. MRS must be diminishing as consumption of good X increases.

Diagrammatically, the two conditions of consumer's equilibrium under indifference curve analysis are:

- 2- Marks for the two conditions
- 2 Marks for the diagram
- 2 Marks for the explanation

33

2- Marks for the two conditions 2 – Marks for the diagram

2 – Marks for the explanation

